A Hybrid Distributed Architecture for Indexing

Ndapandula Nakashole!* and Hussein Suleman?

1 Max-Planck Institute for Computer Science
Saarbruecken, Germany
nnakasho@mpi-inf .mpg.de
2 Department of Computer Science, University of Cape Town
Private Bag, Rondebosch, 7701, South Africa

hussein@cs.uct.ac.za

Abstract. This paper presents a hybrid scavenger grid as an underlying
hardware architecture for search services within digital libraries. The hy-
brid scavenger grid consists of both dedicated servers and dynamic re-
sources in the form of idle workstations to handle medium- to large-scale
search engine workloads. The dedicated resources are expected to have
reliable and predictable behaviour. The dynamic resources are used op-
portunistically without any guarantees of availability. Test results con-
firmed that indexing performance is directly related to the size of the hy-
brid grid and intranet networking does not play a major role. A system-
efficiency and cost-effectiveness comparison of a grid and a multiproces-
sor machine showed that for workloads of modest to large sizes, the grid
architecture delivers better throughput per unit cost than the multiproces-
sor, at a system efficiency that is comparable to that of the multiprocessor.

1 Introduction

Distributed architectures are de facto data scalability platforms as evidenced
by the scale of data handled by service providers on the Web such as those
that provide search and storage services. With ever-expanding digital library
collections, scalable services are needed to provide efficient access to data.

In recent years, Web search engines have enabled users on the Web to effi-
ciently search for documents of interest. Results are returned in a few seconds,
with potentially relevant documents ranked ahead of irrelevant ones. These
technology companies compete with one another to provide high quality search
services requiring complex algorithms and vast computer resources, at no di-
rect financial cost to the user. However Web search engine spiders often do not
completely index data stored in digital libraries so search has to be provided as
part of the digital library software suite.

Many large-scale Web service providers — such as Amazon, AOL, Google,
Hotmail and Yahoo! — use large data centres, consisting of thousands of com-
modity computers to deal with their computational needs. In 2003, Google

* Work done while a student at the University of Cape Town

search engine architecture had more than 15,000 commodity class PCs with
fault-tolerant software [3]. The key advantage of this architectural approach
is its ability to scale to large data collections and millions of user requests.
For example, Web search engines respond to millions of queries per day at
a low latency. Clusters of commodity computers are known for their better
cost/performance ratio in comparison to high-end supercomputers. However,
there is still a high cost involved in operating large data centres. Such data cen-
tres require investment in a large number of dedicated commodity PCs. In ad-
dition, they need adequate floor space, cooling and electrical supplies. IDC3
reported that in 2007 businesses spent approximately $1.3 billion to cool and
power spinning disk drives in corporate data centres and this spending is fore-
casted to reach $2 billion in 2009 [6].

For an organisation hosting a digital library, whose primary focus is not in-
formation retrieval, it may be difficult to justify expenditure on a data centre.
In addition, if the computers will not be used for other tasks, they may not be
highly utilised at all times. Furthermore, it is not clear how much more data
centres can be scaled up at a reasonable cost if both data and workload con-
tinue to grow in the coming years. Baeza-Yates et al.[5] estimate that, given the
current amount of Web data and the rate at which the Web is growing, Web
search engines will need 1 million computers in 2010. It is therefore important
to consider other approaches that can cope with current and future growth in
data collections and be able to do so in a cost-effective manner.

This paper proposes an alternative architecture — a hybrid scavenger grid
consisting of both dedicated servers and dynamic resources in the form of idle
workstations to handle medium- to large-scale search engine workloads. The
dedicated resources are expected to have reliable and predictable behaviour.
The dynamic resources are used opportunistically without any guarantees of
availability. These dynamic resources are a result of unused capacity of com-
puters, networks and storage within organisations, exploiting work patterns
of the people within an organisation. Dedicated nodes are needed to provide
search services that are reliable and have a predictable uptime. Due to the lim-
ited number of dedicated nodes, they cannot provide the scalability required to
handle indexing of large data collections. Thus the dedicated nodes should be
augmented with the dynamic nodes that become available during non-working
hours. From the dedicated nodes, the architecture gets reliability; from the dy-
namic nodes it gets scalability.

The rest of the paper is organised as follows: Section 2 discusses related
work; Section 3 discusses the design and implementation details of the search
engine; Sections 4 to 6 present evaluation details; and Section 7 provides con-
cluding remarks.

3 International Data Corporation (IDC) is a market research and analysis firm spe-
cialising in information technology, telecommunications and consumer technology.
http:/ /www.idc.com.

2 Related Work

Scavenger Grids. A “scavenger” or “cycle-scavenger” grid is a distributed
computing environment made up of under-utilised computing resources in the
form of desktop workstations, and in some cases even servers, that are present
in most organisations. Cycle-scavenging provides a framework for exploiting
these under-utilised resources, and in so doing providing the possibility of sub-
stantially increasing the efficiency of resource usage within an organisation.
Global computing projects such as FightAIDS@Home [10] and SETI@Home
[21] have already shown the potential of cycle-scavenging. The idea of a hy-
brid scavenger grid is an extension of cycle-scavenging — it adds the notion of
dedicated and dynamic resources.

Hybrid Grid Architectures. Although there has been work done on infor-
mation retrieval for cluster(for example Hadoop[14]), grid (for example Grid-
Lucene[17]) and peer-to-peer(for example Minerva[18]) architectures, there has
been virtually no published work that proposes the use of a hybrid scavenger
grid for information retrieval. However a few works have investigated the use
of hybrid scavenger grid architectures for other applications. A recent doctoral
dissertation [1] investigated the use of a combination of dedicated and public
resources in service hosting platforms. It observed that by designing appro-
priate resource management policies, the two types of resources can combined
be utilised to increase the overall resource utilisation and throughput of the
system. The BitTorrent[20] peer-to-peer video streaming platform relies on un-
used uplink bandwidth of end-user computers. Das et al.[7] have proposed the
use of dedicated streaming servers along with BitTorrent, to provide streaming
services with commercially valuable quality assurances while maintaining the
scalability of the BitTorrent platform.

Enterprise Search Toolkits. A number of commercial systems dedicated to
organisational search have been developed. FAST [9], OmniFind [19] and other
traditional enterprise search engines are software toolkits. These toolkits do
not mention the hardware infrastructure required to handle large scale intranet
search. It is up to the organisation to determine the hardware infrastructure
with the storage and computational power to deliver the desired scalability.
The Google Search Appliance and the Google Mini Search Appliance [13] are
hardware devices that provide intranet search able to handle up to millions of
pages. These devices have initial acquisition costs as opposed to using resources
already at the organisation’s disposal in conjunction with a small number of
dedicated resources.

3 Design and Architecture

The focus of this work is not on developing new information retrieval algo-
rithms but rather on a different distributed architecture. Therefore, the devel-
oped prototype uses the Lucene [16] open source search engine as the underly-
ing information retrieval engine. In addition, it uses the Condor job scheduler

User
Scheduler Interface

| / Candar\ |

Dedicated nodes

Dynamic nodes Running: Worker
Running: Worker agents (with Lucene)
agents {with Lucene} and SRB

Fig. 1. High level components of the experimental search engine architecture. These are:
User Interface, Scheduler, Condor, Worker Agents and SRB.

[15] for job submission and tracking. For distributed data management, the sys-
tem employs the Storage Resource Broker (SRB)[4] data grid middleware which
provides a layer of abstraction over data stored in various distributed storage
resources, allowing uniform access to distributed data.

The architecture of the experimental search engine has five main compo-
nents (see Fig. 1). The User Interface provides an access point through which
queries enter the system. The Scheduler performs job allocation and uses Con-
dor to distribute jobs to the dedicated and dynamic nodes which run the Worker
Agents. Worker Agents refer to the software that executes on the nodes of the
grid. The characteristics of the nodes dictate the types of jobs they can perform.
The dedicated nodes are dedicated to search engine operations and thus as long
as they are up and running they are available to execute jobs and provide ser-
vices that are required for the search engine to operate. For this reason, the
dedicated nodes are responsible for providing persistent storage for the indices
via SRB and also for responding to queries. Because availability of the dynamic
nodes cannot be guaranteed they only perform text indexing.

The Scheduler has the task of splitting the data collection into chunks and
ingesting the chunks into SRB. The Scheduler also starts the Worker Agent soft-
ware on the dedicated and dynamic nodes. It does this by first contacting Con-
dor to get a list of the available nodes. The Scheduler then creates Condor jobs
that instruct the nodes to run the Worker Agent software. Worker Agents re-
quest data to index. Upon receiving a request for a data chunk, the Scheduler
allocates a new chunk to the requesting machine. The Scheduler specifies the
data chunk allocated to the machine by indicating the location of the chunk on
SRB. The Worker Agents run a Lucene indexer on the chunk and ingest the re-
sulting sub-index on SRB. Once all the chunks are indexed, all the sub-indices
located on a single SRB server are merged into a single index.

When a query is posed to the system via the User Interface, it is passed on
to the Scheduler which routes the query to all the SRB storage servers that store
indices. The SRB servers independently search their indices and return their re-

sults to the Scheduler. Finally, the Scheduler merges the results before returning
them to the user. The next sections present the results of system performance
evaluation.

4 Experimental Setup

4.1 Hardware

Four computing systems were used for the experiments. The first is a set of
machines called the Dynamic nodes — they are 66 desktop machines within
a 100 Mbps Ethernet network. Each machine is equipped with a 3 GHz Pen-
tium 4 processor, 512 MB of RAM and a 40 GB hard disk. The second is a set of
machines called Dedicated nodes which are 13 desktop class computers inter-
connected by a Gigabit Ethernet network. Each machine is equipped with a 3
GHz Pentium 4 processor, 512 MB of RAM and an 80 GB hard disk. The third is
a desktop class computer with a 2.33 GHz Intel Core 2 Duo processor, 2 GB of
RAM and a 250 GB SATA hard disk — this is the Scheduler. The fourth system
is a multi-core machine (server) with a 3GHz Intel Quad-Core Xeon processor,
8 GB of RAM and a 500 GB SATA hard disk.

4.2 Data set and Query Set

The system was evaluated on a data collection crawled from the .ac.uk do-
main, which is the domain of academic institutions in the United Kingdom.
The collection is 70.27 G of 825,547 documents. The collection has various file
types(PDF 87,189; DOC 21,779; TXT 2,569; RTF 2,042 and HMTL 711,968). In or-
der to test for data scalability, the collection was duplicated in cases where the
data collection needed for the experiments is larger than the actual size of the
collection. Query performance experiments did use duplicated data to simulate
larger collections. The reason behind this is that duplicating the data collection
only changes the index in one dimension. This can affect querying performance.
It does not however affect indexing performance since in distributed indexing
the data is indexed in small jobs and there are no duplicates within each in-
dexing job. Each partial index is independent of subsequent partial indices and
thus the index building process is not affected by data duplication.

Typical query logs from the domains crawled were not available. Instead,
test queries used are top queries of the Web search volume made accessible via
the Google Insights for Search service [12]. Google Insights for Search provides
the most popular queries across specific regions, categories and time frames.
The categories chosen are those that are typically covered by academic institu-
tions, namely: Science, Sports, Telecommunications, Society, Health, Arts and
Humanities. All the queries within the query set return a non-empty result set
on the index of the AC.UK collection. The total number of queries in the set is
1008, with an average number of terms per query of 1.5 and the longest query
contains 3 terms.

The first set of experiments, as shown in the next section, focused on how
the dynamic nodes of the grid can be best organised and utilised to deliver the
best indexing performance.

5 Varying Dynamic Indexers

Within the hybrid scavenger grid, the number of dynamic indexers plays a
major role in indexing time. Ideally, as the number of dynamic indexers in-
creases, indexing time decreases linearly. This experiment aimed to find the
number of dynamic indexers that delivers the best performance. Best in this
sense means that indexing time is reduced and also that the indexers involved
are well utilised.

Distributed indexing can be organised in one of two ways. With Local Data
distributed indexing, machines index data that is stored on their local disks
and transfer the partial index to one of the index SRB storage servers. With
Non-local Data distributed indexing, machines download source data that is
stored on the storage servers on SRB and also store the resulting indices on SRB
storage servers. Intuitively, the Local Data indexing approach achieves superior
performance because of data locality and thus it incurs less network transfer
time. The Local Data indexing approach was used in the experiments reported
here.

Indexing performance for various data sizes was analysed. The accumu-
lated indexing time is the total time spent on all tasks performed to index a
collection of a given size, including job scheduling and communication. Index-
ing time is the time spent on actual indexing of data as opposed to other tasks
such as file transfer or job scheduling. Communication and storage time is the
time to transfer indices and to ingest the indices into SRB.

From Fig. 2 it is clear that as the number of dynamic nodes increases, in-
dexing time decreases and that a large part of indexing time is spent on ac-
tual indexing. Communication and storage time for transmitting and storing
indices on storage servers remains more or less the same even as the number
of dynamic indexers increases. What has not been shown is how resource util-
isation is affected as more dynamic nodes are added to the grid. Fig. 3 shows
the grid system efficiency for varying numbers of dynamic nodes. System effi-
ciency measures utilisation of resources — how busy the resources are kept.

Parallel system performance of a system consisting of n processors is often
characterised using speedup — the serial execution time divided by parallel
execution time: speedup(n) = time(1) /time(n).

System efficiency is defined as the speedup divided by the number of pro-
Cessors:

system efficiency(n) = speedup(n)/n

Thus efficiency is maximised at 1.0 when n=1. From Fig. 3, it can be seen that
for the case of 32 GB, when more than 24 nodes are used, system efficiency goes
down to below 50% of full efficiency. Therefore, at the 24 node point adding

{El} Indexlng performance of dynamic Indexers
. =151 T T T T T T
- " 256 GB —+—
o 7e0 [\ 128 GB -
> 4 32 GR ---m---
T gee - a
2 E \
<~ 588 Y -
e \
SE 40 b\ 1
_:'ﬂ .G\ I'.
oo 300 Y -
 C 1
= zee - e .
o N -
2 10l bw e T .
- . “ e s Seppet
@ foied - t . R - Py Y I " '
; 5 1@ 28 2s -] 5
NHumber of dynamlic nodes
{b) Analusis of indexing time
20 T T
. . aceunulated indexing ti
} Trude ti
8@ Communication + storage time 1
o 68 .
< 140 F N -
.:- [.{\-‘\. 1
= :
" a0 T o
E sal B S .
. 10 ™ i 4
=~ SRS 4
a b i
L S S PP O~ ST TPy R r R RPN donoo
a s i@ 15 2@ 25 30 S

Humber of dunamic nodes

Fig. 2. Indexing performance for dynamic indexers, with 6 SRB storage servers.

more nodes decreases indexing time but utilisation per machine decreases to
levels where each machine does little work, with for example each machine
doing under 60 seconds of indexing. For the 128 GB and 256 GB cases, system
efficiency also declines with increasing numbers of dynamic nodes. However,
due to the increased workload the system remains relatively efficient, reaching
a minimum of 67% and 68% efficiency respectively.

This experiment has shown that for a given workload, the number of dy-
namic nodes can be increased to index the collection in the shortest possible
time. However, adding more nodes to the grid in order to achieve the shortest
indexing time can result is poor utilisation of resources with system efficiency
falling to levels below 50%. Therefore, the optimal number of dynamic nodes
is the one that results in lowest indexing time at a system efficiency above a
defined threshold.

The experiment reported thus far has shown indexing performance of the
hybrid scavenger grid. The question to ask at this stage is how performance of
the hybrid scavenger grid comparecompares to other architectures and whether
itis worth investing in dedicated nodes and maintaining a grid, if the cost is the
same as that of a middle or high end multi-processor server which has compa-
rable performance.

.
» ©.8 . 7
o oy S .
c VI - e .
.‘f" * T T R =%
O B.E - —
- .
v +.
= @.4 - + -
I
+
in
o
@ g2k -
9 L L | A1 L .
2 S 1@ 15 2e 25 38 35
Number of dynamic nodes

Fig. 3. System efficiency during indexing

6 Hybrid Scavenger Grid Versus Multi-core

While cost-effective scalability is one of the advantages of a hybrid scavenger
grid-based search engine, the challenge is the process of designing, implement-
ing and running a search engine on such a distributed system. Limitations of
the grid such as the unpredictable nature of dynamic nodes and job failure rate
can hinder performance. Thus it can be argued that with the advent of multi-
core technology, powerful servers can be purchased for low prices and thus
the centralised architecture should be the architecture for workloads of certain
magnitudes.

Experiments were carried out to compare the cost-effectiveness and system
efficiency of the quad-core machine to that of the hybrid scavenger grid.

To determine the cost-effectiveness of a system with #n processors which cost
cost(n), performance and cost are combined to obtain cost/performance [22]:

costperf(n) = 1;‘;;(:(31)

A system is more cost-effective than the other when its costperf value is
smaller than the other system’s. The cost of a system depends on one’s point of
view. It can be hardware cost for processors, memory, I/O or power supplies.
For the purpose of this experiment, the cost only includes processor cost. The
prices used are list prices in US dollars (as of 7 December, 2008)[11]. The pro-
cessor (Intel Quad-Core Xeon X5472/3 GHz) in the quad-core machine costs
$1,022 and a typical desktop processor (Intel Core 2 Duo E8400/3 GHz)* costs
$163.

4 The experiments used Pentium 4 machines, however these are no longer listed in the
price list from Intel — currently new desktop computers typically have an Intel Core
2 Duo processor and thus the price of a Core 2 Duo was used.

{a) Susten efficiency - 32 GB vorkload (C) Systen efficiency - 256 GF uorkload

(D) tost effectivensss - 32 GB (d) cost effectiveness

Fig. 4. System efficiency and cost-effectiveness: 32 GB and 256 GB

Fig. 4 (a) and (b) show system efficiency and cost-effectiveness of both sys-
tems, for the workload of 32 GB. The system efficiency of the multi-core is con-
stant at 0.64 since the number of cores are fixed, whereas that of the grid varies
with the number of dynamic nodes. It can be seen that for more than 12 dy-
namic nodes, the efficiency of the grid is lower than that of the multi-core, and
continues to decline as more nodes are added. It can also be seen that the cost-
effectiveness (Fig. 4 (b)) of the grid is only significantly better than the multi-
core when 24 or more nodes are used. However, at this point the efficiency(Fig.
4 (a)) of the grid is 0.49 whereas that of the multi-core is 0.64. Therefore for this
particular workload it can be concluded that multi-core is a better choice since
employing the grid leads to poorly utilised resources.

Fig. 4 (c) and (d) show system efficiency and cost-effectiveness of both sys-
tems, for the workload of 256 GB. The system efficiency of the multi-core is 0.76.
The efficiency of the grid is lower than that of the multi-core when more than 8
dynamic nodes are used — it remains relatively high and reaches a minimum
of 0.68 for 32 dynamic nodes. It can be seen in Fig. 4 that the grid performs
better and is more cost-effective when 12 or more dynamic nodes are used. At
that point the grid has a system efficiency of 0.72 which is 4% less than that
of the multi-core. For this workload, it can be concluded that the grid is more
cost-effective and at the same time utilisation of the grid resources is relatively
high.

10

(b) tuery exccution

% &

Fig. 5. Querying performance. The query response times in (b) are sorted in descending

This experiment has shown that for small workloads, although the grid pro-
vides better performance and cost-effectiveness for large numbers of dynamic
nodes, the system efficiency goes to low levels that render the usefulness of
the grid questionable. For modest to large workloads, the grid is a more ben-
eficial approach achieving better cost-effectiveness and maintaining relatively
high system utilisation.

Having established that the hybrid scavenger grid is a beneficial architec-
ture for search engine indexing, it important to also evaluate its performance
for searching.

7 Querying Performance Analysis

In a scalable search engine, query response time should remain more or less
constant even as the size of the searched index increases. Moreover, the in-
dex distribution among the index storage servers should enable query response
times to be more or less the same for different queries — the time to respond to
individual queries should not be substantially longer for some queries while it
is shorter for others.

From Fig. 5(a) it can be seen that the average query response time remains
fairly constant even as the data size is increased. Query throughput is deter-
mined by the performance of the query servers and also by the arrival rate of

11

queries at the scheduler [2] . The attained average throughput is 10.27 queries
per second. This means that the 6 storage servers used can process up to 36,972
queries per hour or roughly close to a million queries per day. With the aver-
age throughput of 10.27, the average time per query is 0.10 seconds. The query
throughput attained is comparable to that of other distributed systems. Badue
et al [2] reported that with a cluster of 8 machines, they observed a query
throughput of 12 queries per second, with an average time per query of 0.12
seconds.

Fig. 5(b) shows that response times for all the queries is below one second,
with an average query response time of 0.13 seconds, a minimum of 0.034 sec-
onds and maximum of 0.39 seconds. This experiment has shown that the aver-
age query response time remains fairly constant, that query response times are
below one second and that the variance in query response times is not substan-
tial.

8 Conclusions

The hybrid scavenger grid proves to be a feasible architecture for a search en-
gine that supports medium- to large-scale data collections within an intranet.
The system reduces indexing time and responds to queries within sub-seconds.
The resources of the system can be organised in a way that delivers the best
performance by using the right number of nodes. The desired levels of perfor-
mance and system efficiency determine the optimal number of dynamic/static
nodes to index a collection.

The scalability of the architecture comes from the fact that more dynamic
nodes can be added as required. Data scalability is vital as collections within
digital libraries continue to grow at fast rates. For example, digital libraries of
scholarly publications have become increasingly large as academic and research
institutions adopt open access institutional repositories, using tools such as
EPrints[8], in order to maximise their research impact. As an institution grows,
so does the amount of the data it produces but also human resources increase.
Assuming the normal practice of one computer per person, there will always be
enough dynamic nodes to deal with the increasing data within an institution.

One possible future work direction is to evaluate the system’s ease of main-
tenance. Maintaining a distributed system requires significant human effort.
Large data collections of several terabytes of data require a large grid consist-
ing of large numbers of dynamic nodes. As the size of the grid grows, the effort
required to operate and maintain the grid also becomes greater. Therefore, it
would also be of interest to know the human cost of a hybrid scavenger grid
operation in comparison with the other architectures while taking into account
performance, hardware cost-effectiveness and resource efficiency.

12

References

1. S. Asaduzzaman. Managing Opportunistic and Dedicated Resources in a Bi-modal
Service Deployment Architecture. PhD thesis, McGill University, 2007.

2. C. Badue, P. Golgher, R. Barbosa, B. Ribeiro-Neto, and N. Ziviani. Distributed pro-
cessing of conjunctive queries. In Heterogeneous and Distributed IR workshop at the
28th ACM SIGIR Salvador,Brazil, 2005.

3. L. A. Barroso, J. Dean, and U. Holzle: Web search for a planet: The Google Cluster
Architecture. IEEE Micro, 23(2):22-28, March/ April 2003.

4. C.K.Baru, R. W. Moore, A. Rajasekar, and M. Wan. The SDSC storage resource broker.
In Proceedings of the 1998 conference of the Centre for Advanced Studies on Collabo-
rative Research, Toronto, Canada, 1998.

5. R. Baeza-Yates, C. Castillo, F. Junqueira, V. Plachouras, and F. Silvestri. Challenges on
distributed web retrieval. In ICDE, pages 6-20, Istanbul, Turkey, 2007. IEEE.

6. Computerworld Inc. Storage power costs to approach $2B this year. Website, 2009.
http:/ /www.computerworld.com

7. S. Das, S. Tewari, and L. Kleinrock. The case for servers in a peer-to-peer world. In
Proceedings of IEEE International Conference on Communications, Istanbul, Turkey,
2006.

8. EPrints. Open access and institutional repositories with EPrints . Website, 2009. http:
/ /www.eprints.org/.

9. FAST. FAST enterprise search. Website, 2008. http:/ /www.fastsearch.com.

10. FightAIDS@Home. Fight AIDS at Home. Website, 2008.
http:/ /fightaidsathome.scripps.edu/.

11. Intel Cooporation. Intel processor pricing. Website, 20009.
http:/ /www.intc.com/priceList. cfm.

12. Google. The Google Insights for Search. Website, 2008.
http:/ /www.google.com/insights/search/.

13. Google. The Google search appliance. Website, 2008.
http:/ /www.google.com/enterprise/ index.html.

14. Hadoop. Apache Hadoop. Website, 2008. http:/ /hadoop.apache.org/

15. M. Litzkow and M. Livny: Experience with the condor distributed batch system. In
Proceedings of the IEEE Workshop on Experimental Distributed Systems,1990.

16. Lucene. Lucence search engine. Website, 2008. http:/ /lucene.apache.org/.

17. E. Meij and M. Rijke. Deploying Lucene on the grid. In Open Source Information
Retrieval Workshop at the 29th ACM Conference on Research and Development on
Information Retrieval, Seattle, Washington, 2006.

18. S. Michel, P. Triantafillou and G. Weikum. MINERVA: a scalable efficient peer-to-
peer search engine. In Proceedings of the ACM/IFIP /USENIX 2005 International Con-
ference on Middleware. Grenoble, Greece, 2005.

19. OmniFind. OmniFind search engine. ~Website, 2008. http://www-
306.ibm.com/software/ data/enterprise-search/omnifind-yahoo.

20. J. A. Pouwelse, P. Garbacki, D. H. J. Epema, and H. J. Sips. The bittorrent p2p file-
sharing system: Measurements and analysis. In 4th International Workshop on Peer-
to-Peer Systems, pp. 205216, Ithaca, N, 2005.

21. SETI@Home. Search for extraterrestrial intelligence at home. Website, 2007.
http:/ /setiathome.berkeley.edu/.

22. D. A. Wood and M. D. Hill. Cost-effective parallel computing. IEEE Computer,
28:69-72, 1995.

