
Dialog Data Collection for an Interactive Plotting Agent

Yutong Shao and Ndapa Nakashole
Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093
yshao@eng.ucsd.edu, nnakashole@eng.ucsd.edu

Abstract

Plotting is a key tool for making data read-
able and for exposing useful trends in the
data. In this work, we aim to enable data
plotting using natural language instruc-
tions. As a first step, we are developing a
data collection pipeline for user-agent di-
alogs which will allow us to train a slot
filling system that maps from natural lan-
guage to slots and values supported by a
popular plotting library, matplotlib.

1 Introduction

Data has become ubiquitous in everyday life. For
example, mobile phones and wearable devices
generate data about our activities. Businesses col-
lect data and generate massive amounts of data.
Cities and countries also provide publicly avail-
able data. This plethora of data can be utilized
for the benefit of people and businesses. However,
in its raw form, data is often unreadable and there-
fore difficult to derive insights from. Plotting is
a simple yet powerful technique for making raw
data readable and useful. However, current plot-
ting tools require a certain amount of expertise and
knowledge of programming. In this work, we seek
to enable data plotting using natural language in-
structions.

We thus seek to build a Plotting Agent, whose
goal is to take natural language input, fill the
slots and carry out the plotting action using
matplotlib. We formulate this problem as a
slot-based task-oriented dialog problem. Example
slots include line color, line width, marker size,
marker color, marker interval, data series name,
etc. Also, when necessary, the Plotting Agent may
ask clarification questions to improve its under-
standing of the user instructions. In this way, the
Plotting Agent and the user engage in a dialog
where the user specifies how they want their data
to be plotted to the Plotting Agent.

We are developing a dialog data collection
pipeline which will allow us to train the slot filling
dialog system in a supervised way. In this short
paper, we describe this new task, especially the di-
alog data collection process.

2 Dialog Collection

A widely-used dialog collection scheme is the
Wizard-of-Oz (Strauß et al., 2006), in which one
worker plays the user and another worker plays the
agent. Our data collection pipeline also follows
this scheme.

We are collecting dialogs using Amazon Me-
chanical Turk (MTurk). In particular, we designed
our Mturk Human Intelligence Task (HIT) to have
a Describer worker, who plays the role of the user;
and an Operator worker, who plays the role of the
plotting agent. Several screenshots of the UI for
both workers are shown in Figure 1, 2, 3 and 4.
The Describer has access to a “target plot” that is
to be plotted, while the Operator has access to an
“operation panel” which consists of one change-
able field for each slot. The Operator can use this
panel to send plotting request to the server and the
slot values will also be recorded. Both workers
have access to a “current plot” which is the latest
plot that the Operator has plotted. It is initialized
to a placeholder plot with default slot values, only
for showing the underlying data series1.

To start, the Describer sends a message (in nat-
ural language) to the Operator to describe the plot
style that he/she sees in the target plot. The Oper-
ator can respond in natural language to ask clari-
fication questions, or fill out some slots in the op-
eration panel and show the current plot to the De-
scriber. Then the two workers take turns to speak
or plot, until the current plot exactly matches the
target plot.

1This is also to ensure that the workers do not describe the
data but merely focus on the “plot style”.



One concern about this pipeline is the distract-
ing latency of response from the other worker
(Wen et al., 2017), which is a general problem
of Wizard-of-Oz pipelines. Also, workers need to
be paired to start this HIT, which means the first
worker to accept the HIT has to wait until another
worker comes. If the waiting time is long, work-
ers will lose patience and leave. To address these
problems, many previous works ask each partici-
pating worker to contribute only one turn to the di-
alog (Wen et al., 2017; Eric and Manning, 2017).
However, in our task setting, this approach may
cause other problems. Firstly, as the rewards no
longer depend on task success, Describers would
minimize the descriptions they write, e.g. refer-
ring to only one slot in a brief way, such as only
saying “yellow line” or “thick line”; if rewards
are based on task success, workers would be more
willing to write better descriptions. Also, Oper-
ators can always ask clarification questions like
“what do you mean” instead of trying to under-
stand the instruction and update the plot. In all,
one-turn contribution can mitigate the problem of
response latency and pairing latency, but it loses
the advantage of paying workers upon success,
which encourages workers to make real construc-
tive actions. This is an important design choice to
consider.

3 HIT Interface

We now describe the UI in more detail using
screenshots.

Figure 1 shows the main UI for the Describer. In
the leftmost column, we show the descriptions for
this task, including the task goal, action instruc-
tions and other tips and notice. In the middle col-
umn are the target plot and current plot, so that the
Describer can easily compare and find the differ-
ence. On the right side is the dialog section, which
shows the whole dialog history. In the Describer’s
turn, he/she can type text in the input text field and
send to Operator. When waiting for response, the
UI will show a “waiting” message and the input
text field will be disabled.

Figure 2 shows the main UI for the Operator.
Similar to the Describer UI, we also have descrip-
tions on the left and dialog section on the right. In
the middle, we have the “operation panel” where
the Operator can change the value of different
slots, and a “plot” button to submit the plotting re-
quest. Below that is the current plot. In the Opera-

Figure 1: Describer UI

Figure 2: Operator UI

tor’s turn, he/she can choose either to send a plot-
ting request, which will update the current plot and
automatically send a formatted message indicat-
ing which slots have been changed (see the dialog
section in both Figure 1 and 2); or, to send a text
message (clarification question) to the Describer.
When waiting for response, both the “plot” button
and the input text field will be disabled.

When the current plot exactly matches the target
plot, the HIT ends automatically and both workers
are shown a success message and the “Done with
this HIT” button (see Figure 4).

4 Future Work

This is ongoing work and we are in the process
of completing our dialog collection pipeline and
deploying it to collect a dataset for our task. Af-
ter data collection, we will implement baselines
that include simple rule-based baseline models
and state-of-the-art models on other similar tasks,
as well as designing a specialized model for this
task. Experiments will be conducted to illustrate
the difficulty of this task and compare the perfor-
mance of different models.

Further, if the slot-based Plotting Agent task
can be well-addressed, we can extend it into more
complex settings, e.g. utilizing a set of API func-
tions in an intelligent way (instead of a single slot-
based function call), which will be more similar to
Program Synthesis.




